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Abstract

A method has been developed for determining the streamwise variation of the temperature of a moving sheet in the

presence of a co-flowing fluid. The solution does not depend on any material property of the sheet, its velocity, or its

thickness. The solution is also independent of the properties of the fluid aside from the Prandtl number. Furthermore,

the actual velocities of the sheet and the fluid need not be specified, but only their ratio is required. In the development

of the method, a large knowledge base was first created by solving the differential equations for mass, momentum, and

energy. The tabulated knowledge base served as input to a purely algebraic procedure whose end result is the stream-

wise variation of the sheet temperature. The procedure is iterative but requires no more than a least-squares curve-

fitting capability. The iterative procedure is robust in that the converged result is independent of the initial iterant.

It is also self correcting in the presence of an inadvertent error. Another method for determining the streamwise tem-

perature variation, the relative-velocity model, was also investigated, and its accuracy assessed.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The thermal processing of sheet-like materials is a

necessary operation in the production of paper, lino-

leum, polymeric sheets, roofing shingles, insulating

materials, and fine-fiber matts. In virtually all such pro-

cessing operations, the sheet moves parallel to its own

plane. The moving sheet may induce motion in the
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neighboring fluid or, alternatively, the fluid may have

an independent forced-convection motion that is parallel

to that of the sheet. Representative applications involv-

ing a moving sheet and an independently moving fluid

are illustrated in Figs. 1 and 2.

Heat transfer between the sheet and the adjacent fluid

is usually initiated at the first contact between the media.

If the fluid temperature is lower than that of the sheet,

the sheet temperature decreases in the streamwise direc-

tion. Alternatively, if the fluid temperature is greater

than the sheet temperature, there is a streamwise

increase of the latter. The design of a thermal processing

station for moving sheets requires a knowledge of heat
ed.
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Nomenclature

a0, a1, a2 constants defined in Eq. (7)

b0, b1, b2 constants defined in Eq. (27)

c0, c1, c2 constants defined in Eq. (31)

cs heat capacity of the moving sheet

f dimensionless stream function

k thermal conductivity

_m mass flow rate of the moving sheet

Pr Prandtl number

qw local heat flux into the sheet

Rex Reynolds number based on the streamwise

coordinate

U velocity

u, v local velocity components in the x- and y-

direction

t thickness of the moving sheet

W width of the moving sheet

x, y coordinates

Greek symbols

a thermal diffusivity

g similarity variable defined in Eq. (1)

H0, H1, H2 dimensionless sheet temperature func-

tions

q density

k variable of integration

l dynamic viscosity

m kinematic viscosity

swall wall shear stress

v dimensionless streamwise coordinate de-

fined in Eq. (26)

Subscripts

f fluid

rel relative

RVM relative-velocity model

s sheet

1 freestream

Superscript

Roman numerals iteration number

U

Us

L

Boundary layer

x

y

Fig. 2. A processing station where an extruded sheet-like

material is washed by a fluid emerging through a slot in the die

which produces the sheet.

U

Us

L

Boundary layer

x

y

Fig. 1. A processing station where a ducted flow is passed over

a moving sheet.
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transfer rates and corresponding sheet temperature vari-

ations. This information is necessary for fixing the

streamwise length of the processing station.

The objective of this paper is to provide a universal

solution for the streamwise temperature variation in a
moving sheet which is situated in either a quiescent or

moving fluid. Although the universal result is based on

exact solutions of the relevant conservation equations,

the streamwise temperature variation can be determined

by purely algebraic operations. The algebraic form of

the universal result enables its convenient use as a design

tool. A further focus of the paper is to assess the errors

incurred when an approximate method, the relative-

velocity method, is used instead of the exact solutions.

The literature on fluid flow and heat transfer for the

moving sheet problem can be conveniently classified into

two groupings: (1) heat transfer in the fluid correspond-

ing to a prescribed, artificial temperature boundary con-

dition at the fluid-sheet interface without thermal

participation of the sheet, and (2) coupled heat transfer

in the fluid and in the moving sheet for the special case

of a moving sheet in an otherwise quiescent fluid. With

regard to group 1, the thermal boundary condition that

was most often employed is the isothermal sheet [1–6].

In [7], the difference between the surface temperature

and the fluid temperature was assumed to vary as a

power of the streamwise coordinate. This prescribed

temperature was chosen in order to obtain a similarity

solution for the temperature field.

The papers of group 2 [8–13] represent, for the most

part, numerical solutions of the coupled energy equa-

tions for the moving sheet and induced boundary layer

flow in the otherwise quiescent fluid. In [13], an integral

method is employed while in [11], a simplified model was

used in which a known heat transfer coefficient was
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imposed on the moving sheet. Although the papers of

group 2 dealt with the conjugate problem in some form,

all except [11,13] required the solution of differential

equations.

In contrast to the aforementioned papers, the present

work deals directly with the variation of the moving-

sheet temperature in response to heat exchange with

an adjacent fluid which may either be quiescent or mov-

ing in its own right. The treatment of the sheet temper-

ature as controlled by the first law of thermodynamics is

in contrast to the models employed in group 1, and the

involvement of an independently moving fluid includes

the models of group 2 as a special case. Another unique

feature of the present work is that, from the standpoint

of a user, only algebraic operations are needed to obtain

the streamwise temperature variation of the sheet.

A potential shortcut to solving the problem in which

both participating media move independently is to use

the relative-velocity model. According to this approach,

the velocity of the slower medium is subtracted from

that of the faster medium, yielding the relative velocity,

Urel. Then, the heat transfer formulas for the faster med-

ium are evaluated using the relative velocity as input. In

numerous heat transfer textbooks [15–19], the use of the

relative-velocity model is implicitly suggested.
2. Establishment of a knowledge base

The purpose of this section of the paper is to establish

a knowledge base to support the algebraic universal

solutions to be developed in the next part of the paper.

The knowledge base will consist of heat transfer infor-

mation at the interface between the moving fluid and

the moving sheet. This information will be obtained

for certain convenient thermal boundary conditions

which will later be generalized to accommodate any

streamwise variation of the interface temperature. Since

the thermal knowledge base necessarily depends on the

solution of the velocity problem, the relevant velocity

knowledge base will be presented first.

2.1. Velocity information

The solution to the velocity problem that is needed as

a prerequisite for solving the heat transfer problem is

already available in the literature [14]. The velocity

problem in the fluid corresponding to the simultaneous

motion of the sheet and the fluid yields a boundary layer

similarity solution in which the similarity variable g is

defined as

g ¼ y

ffiffiffiffiffiffiffiffi
U rel

mx

r
ð1Þ

where Urel = jU1 � Usj. The x and y coordinates which

appear in Eq. (1) are illustrated in Figs. 1 and 2. The cor-
responding streamwise and transverse velocities, u and v,

respectively, are given by

u ¼ U relf 0; v ¼ 1

2

ffiffiffiffiffiffiffiffiffiffi
mU rel

x

r
ðgf 0 � f Þ ð2Þ

in which 0 = d/dg. The quantities f and f 0 are solutions of

a Blasius-type equation

f 000 þ 1

2
f 00f 0 ¼ 0 ð3Þ

However, the boundary conditions for Eq. (3) differ

from those that accompany the classical Blasius equa-

tion. The change in the boundary conditions stems from

the need to accommodate both the sheet velocity Us at

y = 0 and the freestream fluid velocity U1 as y !1.

These boundary conditions, plus the impermeability

condition at y = 0, transform to

f ð0Þ ¼ 0; f 0ð0Þ ¼ U s

U rel

and f 0ðg ! 1Þ ¼ U1

U rel

ð4Þ

From the definition of Urel = jU1 � Usj, the velocity

ratios appearing in Eq. (4) can be rewritten as

U s

U rel

¼ 1

1� U1
U s

��� ��� ;
U1

U rel

¼ 1

1� U s

U1

��� ��� ð5Þ

Therefore, the velocity problem is parameterized by

the ratio of U1/Us.

For future reference, it is useful to list the values of

f 00(0) as a function of U1/Us. The special role of f 00(0)

is its starting value in a numerical marching procedure

which begins at g = 0 and proceeds to g! 1. A physi-

cal interpretation of f 00(0) is the dimensionless wall shear

swall
1
2
qU 2

rel

¼ 2 f 00ð0Þj jffiffiffiffiffiffiffi
U relx
m

q ð6Þ

A listing of the f 00(0) values is given in Table 1.

Inspection of Table 1 reveals that the direction of the

wall shear depends on whether U1 > Us or Us > U1. In

the former case, the fluid drags the sheet and, in turn, in

the sheet tends to retard the motion of the fluid. Conse-

quently, the shear imposed by the sheet on the flowing

fluid acts in the negative x direction, which accounts

for the minus signs appearing in Table 1. On the other

hand, the case of the faster moving sheet yields a force

which the sheet exerts on the fluid in the positive x direc-

tion, with corresponding plus signs in the table.

2.2. Heat transfer information

Suppose that the temperature at the interface, y = 0,

between the flowing fluid and the sheet can be described

by the second-degree polynomial

T fðx; 0Þ � T1 ¼ a0 þ a1xþ a2x2 ð7Þ

where a0, a1, and a2 are constants. At this early point of

the development, attention is focused on the fluid and



Table 1

Listing of f 00(g = 0) values

U1
U s

f 00(g = 0)

0.000 �0.4439

0.100 �0.4832

0.200 �0.5279

0.300 �0.5797

0.400 �0.6421

0.500 �0.7204

0.600 �0.8238

0.700 �0.9713

0.800 �1.214

0.900 �1.717

1.111 1.726

1.250 1.177

1.429 0.9257

1.667 0.7689

2.000 0.6573

2.500 0.5704

3.333 0.4991

5.000 0.4377

10.00 0.3829

1 0.3319
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the heat transfer processes in the sheet are not being

considered. Those processes will be the focus of the next

section of the paper.

It is proposed to solve for the temperature distribu-

tion in the fluid subject to the boundary condition Eq.

(7). To this end, it is tentatively postulated that

T fðx; yÞ � T1 ¼ a0H0ðgÞ þ a1H1ðgÞxþ a2H2ðgÞx2 ð8Þ

where g is the similarity variable defined by Eq. (1). In

order that Eq. (8) satisfies the boundary condition of

Eq. (7), it is necessary that

H0ð0Þ ¼ 1 H1ð0Þ ¼ 1; and H2ð0Þ ¼ 1 ð9Þ

It is also necessary to verify that the proposed tem-

perature solution of Eq. (8) satisfies the boundary layer

energy equation for the fluid, which is

u
oT f

ox
þ v

oT f

oy

� �
¼ af

o
2T f

oy2
ð10Þ

Upon introduction of u and v from Eq. (2) and Tf

from Eq. (8), there follows

U relf 0 a0
oH0

ox
þ a1

oH1

ox
xþH1

� �
þ a2

oH2

ox
x2 þ 2xH2

� �� �

þ 1

2

ffiffiffiffiffiffiffiffiffiffi
mU rel

x

r
gf 0 � fð Þ a0

oH0

oy
þ a1

oH1

oy
xþ a2

oH2

oy
x2

� �

¼ af a0
o2H0

oy2
þ a1

o2H1

oy2
xþ a2 �

o2H2

oy2
x2

� �
ð11Þ
which, after elimination of o/ox and o/oy in favor of d/dg
by the chain rule, can be rearranged to read

x�1 1

Pr
H00

0 þ
f
2
H0

0

� �
þ x0

1

Pr
H00

1 þ
f
2
H0

1 � f 0H1

� �

þ x1
1

Pr
H00

2 þ
f
2
H0

2 � 2f 0H2

� �
¼ 0 ð12Þ

Since the equality expressed by Eq. (12) must hold for

all values of x, it is necessary that each of the bracketed

quantities be independently equal to zero. As a

consequence,

H00
0 þ

f
2
PrH0

0 ¼ 0 ð13Þ

H00
1 þ

f
2
PrH0

1 � f 0 PrH1 ¼ 0 ð14Þ

H0
2 þ

f
2
PrH0

2 � 2f 0PrH2 ¼ 0 ð15Þ

These equations are, respectively, the governing dif-

ferential equations for H0, H1, and H2.

The boundary conditions for these equations at the

y = 0 interface of the fluid and the sheet have already

been derived and expressed in Eq. (9). Since the differen-

tial equations at issue are of second order, an additional

boundary condition is required. That condition can be

obtained by examining the behavior of the temperature

solution as y! 1 (g! 1). Since the fluid temperature

in the freestream is T1, it is necessary that

T fðx; y ! 1Þ � T1 ¼ a0H0ðg ! 1Þ þ a1H1ðg ! 1Þx
þ a2H2ðg ! 1Þx2 ¼ 0 ð16Þ

Since, again, the equality must hold for all values of

x, it follows that

a0H0ðg ! 1Þ ¼ 0 ð17Þ

a1H1ðg ! 1Þx ¼ 0 ð18Þ

a2H2ðg ! 1Þx2 ¼ 0 ð19Þ

If a0, a1, and a2 are not zero, Eqs. (17)–(19) are satis-

fied by

H0ð1Þ ¼ H1ð1Þ ¼ H2ð1Þ ¼ 0 ð20Þ

If Eqs. (13)–(15) are taken together with Eqs. (9) and

(17)–(20), the H0, H1, and H2 problems are totally spec-

ified. The solutions for these variables depend on the

prescribed values of two parameters: the Prandtl number

Pr and the velocity ratio U1/Us. Numerical solutions of

these equations are readily carried out by utilizing a

forward-integration method in which values of H0
ið0Þ

are tentatively assigned and systematically varied until

the boundary conditions expressed by Eq. (20) are

fulfilled.



E.M. Sparrow, J.P. Abraham / International Journal of Heat and Mass Transfer 48 (2005) 3047–3056 3051
The values of H0
ið0Þ are not only critical for the

numerical solution of the governing equations for the

Hi functions, but they are also closely related to the rate

of heat transfer that crosses the interface between the

sheet and the adjacent fluid. Therefore, the values of

H0
ið0Þ represent an important part of the knowledge base

that is needed for the generalized solutions for the

streamwise sheet-temperature variations. It is appropri-

ate to list the values of H0
ið0Þ for convenient subsequent

use. Such a listing is provided in Table 2 for 180 cases

covering the entire range of velocity ratios and for Pra-

ndtl numbers of 0.7, 5, and 10. This choice of the Prandtl

number reflects the use of both air and water as common

fluids related to the processing of moving sheets.

In order to facilitate interpolation among the H0
ið0Þ

values for the three selected Prandtl numbers, a scaling

of H0
ið0Þ by the factor Pr0.45 has been introduced which

effectively narrows the range over which interpolation

has to be performed.

Inspection of the table reveals that the values of

H0
ið0Þ are greater at higher Prandtl numbers. This is

because the thermal boundary layer becomes thinner

as the Prandtl number increases, and, as a consequence,

the temperature functions Hi(g) must decrease more

rapidly between their terminal values of 1 and 0. Also

noteworthy is that the sensitivity of H0
ið0Þ to the velo-

city ratio U1/Us increases with increasing Prandtl

number.

The presentation of the information for H0
ið0Þ brings

the needed knowledge base to completion.
Table 2

Listing of H0
ið0Þ=Pr0.45 as a function of U1/Us and Pr

U1
U s

H0
0ð0Þ H0

1ð0Þ
0.7 5 10 0.7 5

0.00 �0.410 �0.559 �0.596 �0.943 �1

0.10 �0.453 �0.594 �0.631 �1.014 �1

0.20 �0.500 �0.635 �0.673 �1.097 �1

0.30 �0.554 �0.685 �0.723 �1.194 �1

0.40 �0.618 �0.746 �0.786 �1.311 �1

0.50 �0.696 �0.825 �0.866 �1.459 �1

0.60 �0.800 �0.931 �0.974 �1.657 �1

0.70 �0.946 �1.085 �1.132 �1.942 �2

0.80 �1.186 �1.342 �1.395 �2.412 �2

0.90 �1.715 �1.915 �1.987 �3.459 �3

1.11 �1.700 �1.931 �1.911 �3.373 �3

1.25 �1.164 �1.299 �1.286 �2.288 �2

1.43 �0.917 �1.004 �0.994 �1.786 �1

1.67 �0.766 �0.818 �0.809 �1.471 �1

2.00 �0.656 �0.683 �0.676 �1.245 �1

2.50 �0.572 �0.576 �0.569 �1.068 �1

3.33 �0.504 �0.487 �0.480 �0.920 �0

5.00 �0.445 �0.410 �0.401 �0.792 �0

10.0 �0.392 �0.343 �0.328 �0.675 �0

1 �0.344 �0.279 �0.258 �0.564 �0
3. Generalized method for the streamwise variation

of the sheet temperature

3.1. Heat transfer rate at the fluid-sheet interface

A necessary ingredient in the development of a meth-

od for determining the streamwise variation of the sheet

temperature is a knowledge of the heat flux, qw, passing

into the sheet at the fluid-sheet interface. To this end,

Fourier�s law is applied to the temperature solution,

Eq. (8), at y = 0, with the result

qw ¼ kf
oT f

oy

����
y¼0

¼ kf
o a0H0ðgÞ þ a1H1ðgÞxþ a2H2ðgÞx2ð Þ

oy

����
y¼0

ð21Þ

With the recognition that oH/oy = dH/dg Æ og/oy, Eq.
(21) becomes

qw ¼ kf

ffiffiffiffiffiffiffiffi
U rel

mx

r
� a0H

0
0ð0Þ þ a1H

0
1ð0Þxþ a2H

0
2ð0Þx2

� �
ð22Þ

The H0
ið0Þ values needed for the evaluation of qw are

available from Table 2.
3.2. Energy balance for the moving sheet

The generalized method for determining the stream-

wise variation of the temperature of the moving sheet

is based on the first law of thermodynamics. Almost
H0
2ð0Þ

10 0.7 5 10

.164 �1.224 �1.316 �1.573 �1.647

.233 �1.294 �1.407 �1.662 �1.739

.313 �1.376 �1.510 �1.769 �1.848

.410 �1.476 �1.633 �1.897 �1.980

.532 �1.599 �1.786 �2.057 �2.144

.685 �1.758 �1.980 �2.261 �2.354

.893 �1.972 �2.238 �2.537 �2.639

.197 �2.285 �2.612 �2.941 �3.055

.705 �2.809 �3.235 �3.616 �3.752

.846 �3.986 �4.625 �5.134 �5.321

.688 �3.812 �4.484 �4.913 �5.078

.478 �2.556 �3.032 �3.294 �3.400

.912 �1.966 �2.356 �2.535 �2.612

.552 �1.592 �1.933 �2.054 �2.110

.291 �1.317 �1.626 �1.701 �1.741

.082 �1.098 �1.384 �1.419 �1.445

.905 �0.910 �1.182 �1.179 �1.191

.747 �0.741 �1.005 �0.962 �0.960

.599 �0.580 �0.842 �1.241 �0.737

.452 �0.417 �0.686 �0.548 �0.506
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without exception, the moving sheets encountered in

practice are sufficiently thin so as to obviate the need

to consider temperature variations across their thick-

ness. On this basis, the sheet temperature may be treated

as a function only of the streamwise coordinate x. In

addition, the thin-sheet model reduces the axial conduc-

tion of heat in the sheet to a negligible value. In this

light, the energy balance on the moving sheet can be

focused on an element whose streamwise length is dx,

whose thickness is t, and whose spanwise width is W.

The energy balance brings together the rate of heat

transfer to the element with the rate of internal energy

increase for the mass contained within the element.

The rate at which mass passes through the element is

_m. For a non-stretchable sheet, _m can be expressed as

_m ¼ qsWtU s ð23Þ

The surface area across which heat flows into the ele-

ment is jWdx, where j = 1 or 2, depending, respectively,

on whether there is heat flow on one or both of the faces

of the sheet. With these notations, the energy balance

becomes

qsWtU s � cs � dT s ¼ qw � jW dx ð24Þ

Rearrangement of Eq. (24) and subsequent introduc-

tion of the expression for qw from Eq. (22) yields

dT s

dx
¼ qw � j

qst � cs � U s

¼ jkf
qst � cs � U s

ffiffiffiffiffiffiffiffi
U rel

mx

r

� a0H
0
0ð0Þ þ a1H

0
1ð0Þxþ a2H

0
2ð0Þx2

� �
ð25Þ

To obtain a dimensionless representation, it is conve-

nient to introduce a dimensionless streamwise coordi-

nate v defined by

v ¼ U rel � kfqfcf
qscstU sð Þ2

 !
� x ð26Þ

Upon substitution of this transformation into the en-

ergy balance of Eq. (25), there emerges

dT s

dv
¼ 1ffiffiffiffiffi

Pr
p jffiffiffi

v
p b0H

0
0ð0Þ þ b1H

0
1ð0Þvþ b2H

0
2ð0Þv2

� �
ð27Þ

Inspection of Eq. (27) indicates that the transforma-

tion has accomplished its purpose and has reduced the

energy balance to dimensionless form. The b0, b1, and

b2 are a new set of arbitrary constants to replace the ini-

tial arbitrary set a0, a1, and a2. After rearrangement of

Eq. (27) and subsequent integration between 0 and v,
there results

Z T s

T sð0Þ
dT s ¼

jffiffiffiffiffi
Pr

p
Z v

0

b0H
0
0ð0Þþb1H

0
1ð0Þkþb2H

0
2ð0Þk

2
� �

ffiffiffi
k

p dk

ð28Þ
When the actual integration is performed, the sheet

temperature variation takes the form

T sðvÞ¼ T sð0Þ

þ jffiffiffiffiffi
Pr

p b0H
0
0ð0Þv0.5
0.5

þb1H
0
1ð0Þv1.5
1.5

þb2H
0
2ð0Þv2.5
2.5

� �
ð29Þ

Rearrangement of Eq. (29) leads to the dimensionless

form

T sðvÞ � T1

T sð0Þ � T1
¼ 1þ jffiffiffiffiffi

Pr
p 1

T sð0Þ � T1

� �
b0H

0
0ð0Þv0.5
0.5

�

þ b1H
0
1ð0Þv1.5
1.5

þ b2H
0
2ð0Þv2.5
2.5

�
ð30Þ

It is convenient to define

ci ¼
bi

T sð0Þ � T1
ð31Þ

so that

T sðvÞ � T1

T sð0Þ � T1
¼ 1þ jffiffiffiffiffi

Pr
p c0H

0
0ð0Þv0.5
0.5

þ c1H
0
1ð0Þv1.5
1.5

�

þ c2H
0
2ð0Þv2.5
2.5

�
ð32Þ

Although Eq. (32) expresses Ts as a function of v, it is
by no means a completed solution in as much as c0, c1
and c2 remain to be determined. The completion of the

solution will be dealt with in the next section of the

paper.

3.3. Method for obtaining the completed solution for

Ts(v)

To begin the development of the method for complet-

ing the solution for Ts(v), the quantities c1 and c2 are

temporarily set equal to zero and c0 is taken equal to

one. This choice of c0 does not in any way affect the final

solution of the problem. Under these conditions, Eq.

(32) becomes

T I
sðvÞ � T1

T sð0Þ � T1
¼ 1þ jffiffiffiffiffi

Pr
p H0

0ð0Þv0.5
0.5

� �
ð33Þ

Eq. (33) represents a first estimate for Ts(v). To

reflect this fact, the superscript �I� has been appended.

It now remains to refine this initial estimate of the

temperature variation, Ts(v). To this end, ðT I
sðvÞ�

T1Þ=ðT sð0Þ � T1Þ is fitted with a second-degree poly-

nomial in v. Therefore,

1þ jffiffiffiffiffi
Pr

p H0
0ð0Þv0.5
0.5

� �
ffi cI0 þ cI1vþ cI2v

2
� �

ð34Þ

Inspection of the left-hand side of Eq. (34) indicates

that all of the constants that appear there are known.

The Prandtl number is part of the specification of the
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problem, and the value of H0
0ð0Þ is listed in Table 2 as a

function of the both the velocity ratio U1/Us and the

Prandtl number. The quantity j is either 1 or 2 depend-

ing on whether the heat transfer between the sheet and

the fluid respectively occurs at one or both of the faces

of the sheet. Since the left-hand side is a known function

of v, the coefficients cI0, c
I
1, and cI2 can be routinely deter-

mined by making use of the least-squares capability of a

mathematical package such as Excel.

The next step in the method for completing the solu-

tion for the sheet temperature is to make use of Eq. (32)

and specialize it to the presently known values of cI0, c
I
1,

and cI2, so that

T II
s vð Þ � T1

T sð0Þ � T1
¼ 1þ jffiffiffiffiffi

Pr
p cI0H

0
0ð0Þv0.5
0.5

þ cI1H
0
1ð0Þv1.5
1.5

�

þ cI2H
0
2ð0Þv2.5
2.5

�
ð35Þ

At this stage, it is useful to compare ðT I
sðvÞ � T1Þ=

ðT sð0Þ � T1Þ and ðT II
s ðvÞ � T1Þ=ðT sð0Þ� T1Þ. Such a

comparison, conveniently made graphically, will indi-

cate whether or not it is necessary to continue the

refinement procedure or to accept ðT II
s ðvÞ � T1Þ=

ðT sð0Þ � T1Þ as the completed solution. It is the authors�
experience that further levels of refinement will be

required.

The proceed to the next level, the ðT II
s ðvÞ�

T1Þ=ðT sð0Þ � T1Þ variation conveyed by Eq. (35) is

fitted with another second-degree polynomial in v, so
that

1þ jffiffiffiffiffi
Pr

p cI0H
0
0ð0Þv0.5
0.5

þ cI1H
0
1ð0Þv1.5
1.5

þ cI2H
0
2ð0Þv2.5
2.5

� �
ffi cII0 þ cII1 vþ cII2 v

2
� �

ð36Þ

Once again, all of the constants that appear on the

left-hand side are known, thereby enabling the coeffi-

cients cII0 , c
II
1 , and cII2 to be readily determined by means

of a least-squares fit. With these values, the next level of

refinement of ðT III
s ðvÞ � T1Þ=ðT sð0Þ � T1Þ can be writ-

ten as

T III
s ðvÞ � T1

T sð0Þ � T1
¼ 1þ jffiffiffiffiffi

Pr
p cII0 H

0
0ð0Þv0.5
0.5

þ cII1 H
0
1ð0Þv1.5
1.5

�

þ cII2 H
0
2ð0Þv2.5
2.5

�
ð37Þ

Further appraisal of the progress of the solution can

be made by means of a graphical comparison of

ðT II
s ðvÞ�T1Þ=ðT sð0Þ�T1Þ and ðT III

s ðvÞ�T1Þ=ðT sð0Þ�
T1Þ. The outcome of such a comparison is expected to

indicate a trend toward convergence. To continue to-

ward the attainment of complete convergence, the refine-

ment process can be repeated to obtain ðT IV
s ðvÞ�T1Þ=

ðT sð0Þ�T1Þ, ðT V
s ðvÞ�T1Þ=ðT sð0Þ�T1Þ and so on, un-

til the differences between successive iterants is suffi-

ciently small.
4. Universal nature of the solution

It was stated in Section 1 that the solutions to be set

forth here for the streamwise variation of the tempera-

ture of the moving sheet are universal with respect to

most of the parameters that govern the problem. By

inspection of Eq. (37), it can be seen that the solution

does not depend on any material property of the sheet,

its velocity, and its thickness. Furthermore, the solution

is independent of the fluid properties aside from the

Prandtl number. The velocities of the sheet and the fluid

need not be specified as such, but only their ratio is

required. Therefore, the only parameters which affect

the solution for the sheet temperature are the Prandtl

number and the ratio U1/Us.

Another key feature of the solution method is its

guaranteed convergence regardless of the initial iterant.

The authors have experimented with several initial iter-

ants and have demonstrated conclusively that the con-

verged solution is independent of the starting

distribution of T I
sðvÞ. As a further test of the inherent

tendency of the procedure to converge, the authors arti-

ficially introduced errors in one or more of the iterants.

It was observed that even in these disturbed cases,

convergence was achieved to the same final result as

was obtained when no disturbances were introduced.
5. Illustration of the use of the method

It is relevant to demonstrate the application of the

method and, specifically, to show the manner in which

a converged solution is obtained. For the demonstra-

tion, the case U1/Us = 5 and Pr = 0.7 was selected. As

indicated in the previous section, these are the only para-

metric values that are needed for the solution.

To begin, Eq. (33) is used along with the value

H0
0ð0Þ ¼ �0.379 from Table 2, which corresponds to

U1/Us = 5 and Pr = 0.7. In addition, j was selected

equal to 2. With these inputs, Eq. (33) becomes

T I
sðvÞ � T1

T sð0Þ � T1
¼ 1� 2ffiffiffiffiffiffiffi

0.7
p 0.379v0.5

0.5

� �
¼ 1� 1.812v0.5 ffi ðcI0 þ cI1vþ cI2v

2Þ ð38Þ

The next step involves obtaining the values of the c

coefficients from a least-squares fit, with the results

cI0 ¼ 0.8968, cI1 ¼ �6.224, and cI2 ¼ 14.162.

Next, these c values are introduced into Eq. (35)

along with the H0
ið0Þ values from Table 2, from which

there emerges

T II
s ðvÞ � T1

T sð0Þ � T1
¼ 1� 1.63v0.5 þ 6.69v1.5 � 11.6v2.5 ð39Þ

which corresponds to the conclusion of the second iter-

ation. The next iteration involves a least-squares fit of
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Fig. 3. Representative pattern of convergence of the iterative procedure which yields the variation of the sheet temperature in the
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the right-hand side of Eq. (39). The constants which re-

sult from that fit are: cII0 ¼ 0.8936, cII1 ¼ �3.90, and

cII2 ¼ 14.66. With these constants, the equation for the

third iteration is

T III
s ðvÞ � T1

T sð0Þ � T1
¼ 1� 1.62v0.5 þ 4.19v1.5 � 12.0v2.5 ð40Þ

This procedure is continued until convergence.

To identify the attainment of convergence, it is con-

venient to plot the individual iterations and to examine

their behavior. This has been performed in Fig. 3. It is

seen from the figure that convergence is fully achieved

after seven iterations. The pattern of convergence is

marked by successive decreasing overshoots and under-

shoots with respect to the converged result.
6. Errors incurred by the use of the relative-velocity model

As noted in the Introduction, the use of the relative-

velocity model is implied in a number of heat transfer

textbooks which have already been referenced in the

Introduction. In those texts, problems involving moving

sheets were presented without any of the background

knowledge required for the solution of those problems.

The only provided information that could be construed

as being applicable is that for the classical Blasius flat

plate problem in which the plate is stationary and the

fluid moves over it. Therefore, in the absence of other

information, it may be inferred that the authors� in-
tended that these moving-sheet problems be solved using

the results for a moving fluid and a stationary sheet.

A natural extension of this inference is the relative-

velocity model. In such a model, when both the sheet
and the fluid move independently, the smaller of the

velocities is subtracted from the larger, and the differ-

ence is denoted as the relative velocity, Urel. Then, the

slower-moving medium is regarded as non-moving while

the faster-moving medium is treated as if its velocity is

Urel. Next, the skin friction and heat transfer formulas

are identified for the case in which only one of the media

moves. These formulas are evaluated by replacing the

velocity of the moving medium with Urel. In practice,

the faster of the two media is that to which the identified

formulas belong.

6.1. The case of U1>Us

Consider, for concreteness, the situation in which the

velocity of the fluid, U1, exceeds that of the sheet, Us.

Correspondingly, the relative velocity would be equal

to Urel = U1 � Us. For this model, the similarity vari-

able is as given by Eq. (1), and the solution for the veloc-

ity field is imbedded in Eqs. (2) and (3). However, a

change must be made in the boundary conditions rela-

tive to those stated in Eq. (4). In particular, the appro-

priate physical boundary conditions are: u = 0 and

v = 0 at y = 0, and u = Urel as y !1. In terms of the

transformed variables, these boundary conditions

become

f ð0Þ ¼ 0; f 0ð0Þ ¼ 0 and f 0ðg ! 1Þ ¼ 1 ð41Þ

The wall shear stress corresponding to this model

may be derived from its definition

swall;RVM ¼ l
ou
oy

����
y¼0

¼ l

ffiffiffiffiffiffiffiffi
U rel

mx

r
f 00
RVMð0Þ ð42Þ
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The abbreviation RVM indicates the relative-velocity

model. Eq. (42) can be rearranged in dimensionless form

as

swall;RVM

1
2
qfU

2
rel

¼
2 f 00

RVMð0Þ
�� ��ffiffiffiffiffiffiffi

Rex
p ð43Þ

in which Rex = Urelx/m.
It is useful to compare the wall shear results from the

relative-velocity model with those obtained from the

complete model which takes account of the independent

motions of the two media. The shear stress results from

the complete model are expressed in Eq. (6). When ratio

of the shear stresses from the two models is formed,

there results

swall;RVM

swall
¼

f 00
RVMð0Þ
�� ��
f 00ð0Þj j ð44Þ

This ratio can be readily evaluated by making use of

Table 1. The numerator of Eq. (44) is equal to 0.3319

which is read from the bottom line of the table.

Inspection of the values listed in Table 1 in conjunc-

tion with Eq. (44) reveals that the largest errors in the

wall shear are encountered for those cases in which the

velocities of the two media are virtually equal.

The main focus of the accuracy assessment of the rel-

ative-velocity model is the streamwise variation of the

sheet temperature. The scheme by which the sheet tem-

perature was determined for the complete model in

which both media are in motion will now be modified

to apply to the relative-velocity model. The modification

involves the reinterpretation of H0
0ð0Þ, H0

1ð0Þ, and H0
2ð0Þ.

For the relative-velocity model, the numerical values of

these quantities are read from the bottom line of Table

2, that is, for U1/Us = 1. Aside from this change, the

iterative scheme that was discussed earlier continues to

apply.

To demonstrate specific results, consideration will

be given to two cases: (a) U1/Us = 5, Pr = 0.7 and

(b) U1/Us = 1.43, Pr = 0.7. These cases were selected

to illustrate the nature of the comparison for a large

value of U1/Us and for a value of U1/Us close to 1.

The results for case (a) are illustrated in Fig. 4. The

figure shows two curves, with the open symbols repre-

senting the solution to the exact model and the filled

symbols corresponding to the relative-velocity model.

The abscissa is the dimensionless streamwise coordinate

v defined by Eq. (26). The error due to the use of the rel-

ative-velocity model is seen to grow with increasing

downstream distance, reaching a value of 25% at v = 0.2.

For case (b), the results are conveyed in Fig. 5. From

this figure, it is clear that larger errors are in evidence

when the velocity ratio U1/Us differs only slightly from

one. For example, at v = 0.1, the error associated with

the relative-velocity model is approximately 50%.
6.2. The case of Us>U1

The treatment of the case where Us >U1 follows the

same pattern as that already described in detail for the

case in which U1>Us. In fact, there is only one substan-

tive change in the analysis. That change is to use the

boundary conditions f(0) = 0, f 0(0) = 1, f 0(1) = 0 when

Us >U1 to replace f(0) = 0, f 0(0) = 0, f 0(1) = 1 which

were used for U1>Us. The definition of Urel is Us � U1
when Us >U1. Aside from these changes, the discus-

sion presented for U1>Us applies equally well for

Us >U1.
7. Concluding remarks

A method for determining universal solutions for the

streamwise variation of the temperature of a moving

sheet in the presence of an independently moving fluid

has been developed. The first step in the development

of the method was to generate an extensive knowledge
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base obtained from solutions of the boundary layer dif-

ferential equations for the dual-motion situation. These

solutions covered a large number of cases parameterized

by two operating conditions: (a) the ratio of the fluid

velocity to the sheet velocity and (b) the Prandtl number.

The velocity ratio ranged from the case in which the

fluid was stationary in the presence of a moving sheet

to the case in which a flowing fluid passed over a non-

moving sheet. The Prandtl numbers selected for study

reflected the practical use of air and water as common

fluids for the processing of moving sheets. The database

consisted of two parts: (a) normal derivatives of the

velocity at the interface of the sheet and the fluid and

(b) normal derivatives of the temperature at the same

location. For the temperature problem, provision was

made to accommodate streamwise variations of the tem-

perature of the moving sheet. These temperature varia-

tions were not prescribed in advance. Rather, they

resulted from the dynamic interaction of the conjugate

heat transfer processes.

Once the database was generated, it was employed to

obtain universal solutions for the streamwise variation

of the temperature of the moving sheet. The method

for obtaining these temperature results is purely alge-

braic. It is an iterative process which requires no more

than a least-squares curve-fitting capability. It was dem-

onstrated that the successive iterations rapidly converge

to a final result. Furthermore, the final converged result

was shown to be independent of the initial iterant. In

addition, the iterative process is self correcting in the

presence of an inadvertent error.

In addition to the exact solutions which were

obtained as described in the foregoing, approximate

solutions were obtained by the so-called relative-velocity

model. This model is based on the use of the relative

velocity between the moving media. In that model, equa-

tions valid for a situation in which only one of the media

move are adapted to the two-moving-media case by

introduction of the relative velocity in those equations.

Worked-out examples demonstrated that the errors

incurred by the use of the relative-velocity model are

greatest when the individual velocities of the two media

are very close to being equal.
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